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Abstract

Background: Human African trypanosomiasis is fatal without treatment. The long post-treatment follow-up (24 months)
required to assess cure complicates patient management and is a major obstacle in the development of new therapies. We
analyzed individual patient data from 12 programs conducted by Médecins Sans Frontières in Uganda, Sudan, Angola,
Central African Republic, Republic of Congo and Democratic Republic of Congo searching for early efficacy indicators.

Methodology/Principal Findings: Patients analyzed had confirmed second-stage disease with complete follow-up and
confirmed outcome (cure or relapse), and had CSF leucocytes counts (CSFLC) performed at 6 months post-treatment. We
excluded patients with uncertain efficacy outcome: incomplete follow-up, death, relapse diagnosed with CSFLC below 50/
mL and no trypanosomes. We analyzed the 6-month CSFLC via receiver-operator-characteristic curves. For each cut-off value
we calculated sensitivity, specificity and likelihood ratios (LR+ and LR2). We assessed the association of the optimal cut-off
with the probability of relapsing via random-intercept logistic regression. We also explored two-step (6 and 12 months)
composite algorithms using the CSFLC.

The most accurate cut-off to predict outcome was 10 leucocytes/mL (n = 1822, 76.2% sensitivity, 80.4% specificity, 3.89
LR+, 0.29 LR2). Multivariate analysis confirmed its association with outcome (odds ratio = 17.2). The best algorithm
established cure at 6 months with , = 5 leucocytes/mL and relapse with . = 50 leucocytes/mL; patients between these
values were discriminated at 12 months by a 20 leucocytes/mL cut-off (n = 2190, 87.4% sensitivity, 97.7% specificity, 37.84
LR+, 0.13 LR2).

Conclusions/Significance: The 6-month CSFLC can predict outcome with some limitations. Two-step algorithms enhance
the accuracy but impose 12-month follow-up for some patients. For early estimation of efficacy in clinical trials and for
individual patients in the field, several options exist that can be used according to priorities.
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Introduction

Human African trypanosomiasis (HAT) or sleeping sickness,

caused by Trypanosoma brucei gambiense (most common form, West

and Central Africa) and rhodesiense (East and Southern Africa), is

fatal unless treated. After infection, the disease progresses from the

easily treatable haemolymphatic first stage to the meningoenceph-

alitic second stage, when parasites invade the central nervous

system.

Patients who receive treatment can not be considered cured

immediately, because the parasite may remain viable, redevelop-

ing fully the disease many months later. A long post-treatment

follow-up period is thus required to assess cure [1]. This follow-up

time is fixed at 24 months by convention, although in comparative

clinical trials it is considered acceptable to measure the efficacy at

18 months [2]. Follow-up consists of control visits generally every 6

months when lymph, blood and cerebrospinal fluid (CSF) are

examined. The detection of trypanosomes in any body fluid

unequivocally identifies a relapse. Unfortunately, parasites are

often not detected early enough to allow for timely re-treatment,

plus many patients do not adhere to this demanding and invasive

follow-up schedule. To better detect the relapses and avert the risk

for serious sequelae or death, the variation in number of white

blood cells (WBC) in CSF is widely used as a proxy marker of

relapse. Other markers of relapse are under investigation and not

in routine field use.

Because most HAT patients are located in remote rural areas,

the post-therapeutic follow-up is particularly challenging: poverty,

distance, bad roads, lack of transportation, subsistence priorities,

displacement (sometimes conflict related), add to the fear of the

lumbar puncture. As a result, patients’ compliance with follow-up

decreases markedly after the first assessment at 6 months [3].

Such long follow-up is a handicap not only for routine patient

management but also for therapeutic efficacy studies [4], and

particularly when a sequence of clinical studies is required (e.g.

dose-finding studies). Some time can be saved when a given

investigational treatment is assumed to have insufficient efficacy

due to early failures surpassing a pre-defined threshold. However,
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when the cumulative failure rate is below that threshold, the risk of

subsequent final outcome (cure or relapse) can not be predicted.

Research on ways of shortening the follow-up is scarce. One

study suggests that HAT patients with ,5 CSF leucocytes/mL at 6

months are at low risk of relapse (negative predictive value .0.93,

n = 146) [5] and that at 6 and 12 months, patients with $50 and

$20CSF leucocytes/mL, respectively, are at high risk. Another

study tested an algorithm combining 6 and 12 months CSF exams

on a cohort of 206 treated patients showing 97.8% specificity and

94.4% sensitivity to predict relapse [6]. Considering that these

promising findings originated from relatively small cohorts,

recruited each time in one single centre (Bwamanda and Mbuji

Mayi, DRC, respectively), and that confirmed and unconfirmed

efficacy outcomes (lost to follow-up, deaths during follow-up, etc)

were mixed in the assessment via assumptions, further research is

needed on larger datasets and with more restrictive selection

criteria.

To meet this goal, we consolidated individual-patient data from

12 sites in Uganda, Sudan, Angola, Central African Republic,

Republic of Congo and Democratic Republic of Congo where

Médecins Sans Frontières (MSF) had conducted HAT programs,

and we selected patients with confirmed diagnosis, confirmed

stage, complete follow-up (thus confirmed outcome), and meeting

a restrictive, laboratory-confirmed definition of relapse, so as to

maximize information certainty. Our analysis aimed at identifying

early efficacy indicators using the CSF leucocytes count at 6 and

12 months after treatment.

Methods

Ethics statement
The study received ethical clearance from the Médecins Sans

Frontières International Ethical Review Board (Geneva, Switzer-

land). All data analyzed were anonymized from the start.

Using a large pooled dataset from routine MSF gambiense HAT

control programs, we selected patients with confirmed second-

stage disease and having received second-stage treatment, who

completed their follow-up (minimum 22 months) until confirma-

tion of an outcome (cured or relapsed) and who had a CSF

leucocytes count performed at 6 months post-treatment. We

considered 22 months as complete follow-up because in practice

patients coming for control at 22–23 months are not asked to

come again at 24 months.

Second stage was defined by the finding of trypanosomes in

blood, lymph nodes or CSF, with $20 leucocytes/mL in CSF.

We excluded patients who (i) had missing or incoherent data on

key variables, or (ii) died during treatment or follow-up, or (iii) were

diagnosed with relapse before 6 months or later than 36 months post

treatment, or (iv) for the first analysis only: relapsed at 6 months.

Individuals who relapsed before 6 months were excluded

because they do not contribute to the objectives of this analysis,

and those relapsing after 36 months because they are less certainly

distinguishable from reinfections.

Cure was defined as absence of trypanosomes in all body fluids

and , = 20 leucocytes in CSF at $22 months post-treatment; and

relapse as trypanosomes detected in any body fluid or $50 CSF

leucocytes/mL anytime [7]. Patients diagnosed with relapse

without meeting this definition were excluded. We kept the

patients who continued on follow-up despite having $50 CSF

leucocytes/mL and who had a confirmed outcome later (either

cure or relapse).

The strict inclusion criteria aimed at strengthening the validity

of the results by focusing on patients that provide unequivocal

information, using the advantage of having a large cohort.

We defined tolerance windows for each planned follow-up visit:

6 (5–9); 12 (10–16); 18 (17–21); and 24 ($22) months [2].

Melarsoprol treatment included the following regimens: one

series of 10 daily injections; 2 or 3 series of 3 injections; and 3

series of 4 injections. Eflornithine included series of either 7 or 14

days, all at 400 mg/kg/day divided in 4 infusions per day.

Combination treatment included melarsoprol-eflornithine, nifurti-

mox-eflornithine and melarsoprol-nifurtimox co-administrations.

Statistical analysis
We used the Wilcoxon test to compare CSF leucocytes between

different groups of patients. We plotted the evolution of CSF

leucocytes (median, IQR) during the follow-up, overall and by

treatment received.

First analysis. We analyzed the relative change (as a percent

reduction) of the CSF leucocytes between baseline (pre-treatment)

and 6-months, per patient. We also analyzed the absolute count at

6 months independently of the baseline count. We assessed the

accuracy of these 2 diagnostic tests to predict relapse using the

receiver-operator-characteristic (ROC) curve and we reported the

area under the curve (AUC) with its 95% confidence interval (CI)

for each test. For each cut-off of the marker, sensitivity, specificity,

positive likelihood ratio (LR+) and negative likelihood ratio (LR2)

were reported with their respective 95% CI [8–9].

A random-intercept logistic regression was fitted to analyze the

effect of the chosen cut-off taking into account several baseline

individual characteristics. The threshold p-value to include factors

in the initial model was 0.4.

Second analysis. following the composite algorithm in two

steps at 6 and 12 months proposed by Mumba et al. (at 6 months

patients with , = 5 leucocytes/mL are considered cured and with

. = 50 leucocytes/mL are considered relapsed, and at 12 months

all remaining patients are discriminated with a cut-off at 20

leucocytes/mL) [6], we explored various combinations of cut-off

values. The notation we used for the algorithms features the three

cut-off values of CSF leukocytes as follows: (i) lower cut-off at 6

months (cure); (ii) upper cut-off at 6 months (relapse), and (iii)

unique cut-off at 12 months.

Author Summary

Because Human African trypanosomiasis is fatal, it is crucial
for the patient to determine if curative treatment has been
effective. Unfortunately this is not possible without a 24-
month laboratory follow-up, which is problematic and
largely unaccomplished in the field reality. Studies that
assessed early indicators have used small cohorts, yielding
limited statistical power plus potential bias because of
including patients with equivocal outcome. We tackled
this problem by pooling a large dataset which allowed for
selecting cases providing strictly unequivocal information,
still numerous enough to produce sound statistical
evidence. We studied predictors based on the CSF
leucocytes count, a laboratory technique already available
in the field, evaluating their predictive power at 6 and 12
months post-treatment. We found a predictor at 6 months
(10 leucocytes/mL of CSF) that has sub-optimal accuracy
but may be valuable in some particular situations, plus
two-step algorithms at 6 and 12 months that offer
sufficient confidence to shorten the patients’ follow-up.
Until better biomarkers are identified, these findings
represent a significant advance for this neglected disease.
Benefits are foreseen both for patients and for overbur-
dened treatment facilities. In addition, research for new
treatments can be accelerated by using early predictors.

Early Efficacy Prediction for HAT
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Stata 10 software (StataCorp, College Station, Texas, USA) was

used to perform all the data analysis.

Results

Patients selected were 1822 for the first analysis and 2190 for

the second analysis (Figure 1) and had been diagnosed between

September 1995 and February 2006. Throughout this time period

the same diagnostic tools were used. The largest portion of the

cohort was from the centers of Omugo, Northern Uganda (44%)

and Ibba, Southern Sudan (21%), as these two sites achieved

higher follow-up compliance by investing specific resources.

Baseline characteristics are shown in Table 1.

Post-therapeutic evolution of the CSF leucocytes count
At pre-treatment, the CSF leucocytes count was not different

between the 1460 patients who cured (median 137.5 cells, IQR

Figure 1. Study profile: selection of study patients. Patients from 12 Médecins Sans Frontières sites in Uganda, Sudan, Angola, Central African
Republic, Republic of Congo and Democratic Republic of Congo, 1995–2006. a Among these 906 exclusions there are 125 patients that relapsed
before 6 months (hence falling out of the scope of this study); b Tolerance window up to 9 months.
doi:10.1371/journal.pntd.0001662.g001
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65–274) and the 362 who later relapsed (132 cells, IQR 53–270)

(Wilcoxon test p = 0.15), whereas at 6 months it was significantly

higher among patients who later relapsed (29.5 cells, IQR 11–78)

than in patients who cured (4 cells, IQR 2–9) (p,0.001). This

difference increased at 12 and 18 months, as expected (Figure 2).

The difference was observed in all treatment groups, except at 6

and 12 months post-treatment in patients receiving drug

combinations, emerging from 18 months onwards.

The evolution of the CSF leucocytes count was similar in naı̈ve

(first-time treated) and non-naı̈ve patients throughout the post-

therapeutic follow-up (data not shown).

Prediction of final outcome at 6 months
The ROC analysis showed that the absolute CSF leucocytes

count at 6 months was at least as good a predictor of outcome

(AUC 0.84) as the percent reduction (AUC 0.81). The latter being

also the least practical (requiring a bedside calculation involving

the initial laboratory results), we did not explore it further. The

CSF leucocytes count at 6 months showed the best trade off

between sensitivity and specificity at cut-off values of 10 to 13

leucocytes/mL. The best accuracy was obtained with a cut-off at

.10 leucocytes/mL which predicted relapse with 76.2% (95%CI,

71.84–80.65%) sensitivity, 80.4% (95%CI, 78.37–82.45%)

specificity, 3.89 (95%CI, 3.45–4.38) LR+, 0.29 (95%CI, 0.26–

0.32) LR2 (Table 2). The positive predictive value was 0.49

(95%CI, 0.45–0.53) and the negative predictive value 0.93

(95%CI, 0.92–0.94).

The multivariate analysis confirmed, after adjustment on

treatment, age and sex, that the six-months CSF leucocytes count,

with a cut-off at 10 cells, was very strongly associated with the risk

of relapse (odds ratio = 17.2, 95%CI, 12.6–23.5).

Prediction of final outcome by algorithms at 6 and 12
months

Table 3 shows the performance of the two-steps algorithms

when tested with our large dataset (n = 2190) of selected patients

with laboratory-confirmed outcome. In the first line we show the

results reported by Mumba et al. [6] on a smaller cohort

(‘‘algorithm 5-50-20’’).

The same algorithm in our dataset predicted relapse with 87.4%

sensitivity (95%CI, 85–90), 97.7% specificity (95%CI, 97–98),

LR+ of 37.84 (95%CI, 26.4–54.3) and LR2 of 0.13 (95%CI,

0.11–0.16). It wrongly classified as cured (false negatives) 87/1945

patients (4.5%; 95%CI, 3.6–5.5). Two thirds (66.4%; 95%CI,

64.4–68.4%) of the patients followed-up were already classified at

6 months.

The algorithms 5-40-20 and 5-40-15 also performed well, with

confidence intervals overlapping the algorithm 5-50-20. The 5-30-

15 algorithm was slightly more sensitive but less specific. The

proportion of patients classified as cured who later relapsed ranged

Table 1. Baseline characteristics of patients included in each analysis.

Characteristics of the patients First analysis (N = 1822) Second analysis (N = 2190)

N N

Sex ratio (M/F) 1821 1.08 (947/874) 2189 1.12 (1159/1030)

Age, median [IQR] 1822 24 [15–35] 2190 24 [15–35]

Weight, median [IQR] 712 49 [9–56] 951 49 [40–56]

Detected by active screening, n (%) 1822 360 (19.8) 2190 405 (18.5)

Trypanosomes detected 1822 2190

In lymph nodes, n (%) 879 (48.2) 1073 (49.0)

In blood, n (%) 606 (33.2) 712 (32.5)

In CSF, n (%) 1328 (72.9) 1626 (74.3)

CSF leukocyte count 1822 2190

Mean (SD) 233.2 (326.8) 240.8 (321.5)

Median [IQR] 133 [56–272] 141 [62–287]

20–99 cells/mL n(%) 733 (40.2) 817 (37.3)

$100 cells/mL n(%) 1089 (59.8) 1373 (62.7)

Clinical characteristics

Coma score ,15, n (%) 626 29 (4.6) 798 34 (4.3)

Karnofsky index, median [IQR] 641 80 [70–80] 831 80 [70–80]

Treatment naivety 1822 1485 (81.5) 2190 1753 (80.0)

Treatment received 1822 2190

Melarsoprol n(%) 1151 (63.2) 1469 (67.1)

Eflornithine n(%) 540 (29.6) 578 (26.4)

Combinations n(%) 131 (7.2) 143 (6.5)

Patients that relapsed n(%) 1822 362 (19.9) 2190 730 (33.3)

First analysis: leukocytes at 6 months, excluding relapses at 6 months; Second analysis: leukocytes at 6 months, including relapses at 6 months, two-step algorithms.
Combination treatment: within this selected cohort, it included melarsoprol-eflornithine, nifurtimox-eflornithine and melarsoprol-nifurtimox combinations. Coma score:
Glasgow Coma Scale assessing the level of consciousness. Interpretation: 3–8 = severe impairment; 9–12 = moderate impairment; 13–14 = mild impairment; 15 = normal
[13]; Karnofsky index [14].
doi:10.1371/journal.pntd.0001662.t001
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from 3.5 to 4.5% in all tested algorithms. The portion of the

cohort classified at 6 months ranged from 66.4 to 74.1%, leaving

the rest to be classified at 12 months. Of the algorithms tested, the

5-50-20 appeared as the best overall with the highest LR+ and a

proportion of false negatives not significantly different from the

other algorithms (Figure 3).

Discussion

The CSF leucocytes count at 6 months showed a good

prognostic value for final efficacy outcome. However, a small

proportion of patients was wrongly classified. Translated into field

patient management, those wrongly classified as relapsed would be

Figure 2. Evolution of the CSF leucocytes count by final treatment outcome, by treatment group and overall. CSF leucocytes count
expressed as the median and interquartile range (IQR). Cohort of 1822 patients having a leukocytes count performed at 6 months and not relapsing
at 6 months or earlier, who had a complete follow-up. Values at month 0 are pre-treatment measurements. The number of patients per group is
shown at each time point. Dotted lines are used to signify that samples over time contain some different patients.
doi:10.1371/journal.pntd.0001662.g002
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unnecessarily re-treated, sometimes with toxic drugs (e.g. melar-

soprol if first-line treatment was eflornithine or eflornithine-

nifurtimox) and, more importantly, patients wrongly classified as

cured would be at risk of death due to HAT relapse. A two-step

algorithm, at 6 and 12 months, provided a better classification tool

featuring an excellent ability to predict relapses with a lower

misclassification rate.

At 6 months, the CSF leucocytes cut-off at 10/mL had the best

trade-off between positive and negative likelihood ratios. This

indicator can rule out relapse at 6 months post-treatment with a

good degree of confidence (0.93 negative predictive value), but its

ability to identify true relapses is sub-optimal.

Other cut-off values may be of interest for decision-making in

the context of clinical trials, e.g. to continue or suspend enrolment

of new participants based on 6-months data (patients already

enrolled would always benefit of complete follow up).

It is important to underline that the relapse rate was 19.9% in

our dataset (first analysis), which is much higher than the relapse

rate reported with the new and increasingly used nifurtimox-

eflornithine combination therapy (NECT) [10,11]. Because

positive and negative predictive values depend on the relapse

rate, the lower the relapse rate is, the lower will be the positive

predictive value for relapse, but on the other hand the negative

predictive value will be higher, increasing the confidence on the

prediction of cure. Reporting the likelihood ratios allows to make

abstraction of this phenomenon, since they are independent from

relapse rates. Likelihood ratios, both LR+ and LR2 are one of the

best ways to measure diagnostic accuracy. In medicine, a test is

generally regarded as valuable when the LR+ is .5 or the LR2 is

,0.2 [9,12].

Because the CSF leucocytes count at 6 months alone remains

insufficiently accurate for outcome determination, we evaluated

various two-step algorithms at 6 and 12 months, following the

model published by Mumba et al [6].

All tested algorithms performed well, but the 5-50-20 algorithm

showed the highest specificity (97.7%) and LR+ (37.8). The

sensitivity (87.4%), LR2 (0.13) and proportion of patients falsely

declared as cured (4.5%) were statistically comparable to the other

tested algorithms (table 3, figure 3). Two-third of patients (66.4%)

could be classified at 6-months post-treatment. Algorithms that

would increase this proportion (such as 5-20-20, 5-20-15 or 5-20-

10 that classify 74.1% of patients at 6-months) could be

particularly interesting in settings with poor follow-up compliance

beyond the first visit at 6 months.

Our findings therefore confirm that the diagnostic algorithm 5-

50-20 performs well to predict post-treatment outcome, allowing

for a shorter follow-up period.

Other algorithms can be applied depending on the setting and

priority objectives, e.g. clinical trials or individual patient

management in settings with poor follow-up compliance such as

in conflict areas.

In all cases, patients who are declared cured early by using these

predictors should be encouraged to come for control if symptoms

reappear later.

Early determination of outcome presents several key advantages

for HAT control programs: first, it cuts down on uncured patients

remaining infective until eventually detected or dying; second, it

reduces the workload and costs of follow-up; third, it facilitates the

monitoring of treatment effectiveness. For some patients it is life-

saving or preventive of serious sequelae, for most others it reduces

Table 2. Performance of different cut-off values of CSF leucocytes count at 6 months for the detection of relapse.

Cut-off of CSF leucocytes
count at 6 months Sensitivity Specificity Correctly classified Likelihood Ratio

Positive Negative

.5 83.98% 60.21% 64.93% 2.11 0.27

.10 76.24% 80.41% 79.58% 3.89 0.29

.20 59.67% 93.49% 86.77% 9.17 0.43

doi:10.1371/journal.pntd.0001662.t002

Table 3. Comparison of several two-steps (6 and 12 months) algorithms for early outcome determination.

Algorithm n Sensitivity (95%CI) Specificity (95%CI) LR+ (95%CI) LR2 (95%CI)
False
cured (95%CI)

% classified
at 6 months

5-50-20a 213 94.4 (86–98) 97.8 (94–100) 42.20 (13.8–129.3) 0.06 (0.02–0.15) 1.9 (0.5–4.9) 66.2

5-50-20b 2190 87.4 (85–90) 97.7 (97–98) 37.84 (26.4–54.3) 0.13 (0.11–0.16) 4.5 (3.6–5.5) 66.4

5-20-20 2190 89.4 (87–92) 92.0 (90–93) 11.12 (9.2–13.4) 0.12 (0.09–0.14) 3.8 (3.0–4.7) 74.1

5-20-15 2190 90.0 (88–92) 91.7 (90–93) 10.87 (9.0–13.1) 0.11 (0.09–0.14) 3.6 (2.8–4.5) 74.1

5-20-10 2190 90.1 (88–92) 90.8 (89–92) 9.78 (8.2–11.6) 0.11 (0.09–0.14) 3.5 (2.8–4.4) 74.1

5-30-15 2190 89.4 (87–92) 95.4 (94–97) 19.52 (15.2–25.1) 0.11 (0.09–0.14) 3.8 (3.0–4.7) 70.1

5-40-20 2190 87.7 (85–90) 97.1 (96–98) 29.90 (21.7–41.1) 0.13 (0.10–0.15) 4.4 (3.5–5.4) 67.8

5-40-15 2190 88.7 (86–91) 96.8 (96–98) 27.29 (20.2–36.9) 0.12 (0.10–0.14) 4.0 (3.2–5.0) 67.8

5-40-10 2190 89.5 (87–92) 95.2 (94–96) 18.80 (14.7–24.1) 0.11 (0.09–0.12) 3.7 (2.9–4.7) 67.8

aAs reported by Mumba 2010, ‘‘algorithm C’’: includes deaths as treatment failures and patients with incomplete follow-up;
bSame algorithm tested with our dataset including only laboratory-confirmed outcomes. LR: Likelihood ratio. False cured: fraction of patients that are wrongly classified
as cured by the algorithm.
doi:10.1371/journal.pntd.0001662.t003
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the burden of complying with follow-up schemes. For clinical

studies it accelerates acquisition of results and decreases costs.

Strengths and weaknesses
One major strength of this study was the restrictive selection

criteria, which minimized information bias that is typically present

in HAT studies: most cohorts include important proportions of

patients with uncertain or unknown efficacy outcome, due to the

difficulties in completing the patients’ follow-up.

Another strength was the large sample size, which increases the

precision of the findings.

Finally, the statistical methods used, in particular the analysis by

logistic regression with a random intercept controlling the inter-

site heterogeneity.

A weakness arose from the nature of the data used, collected by

field routine programs, which is generally of lower quality than

data collected prospectively within planned studies.

Another weakness arises from the reference used for ‘‘true

outcome’’: a composite definition based on the presence of

Figure 3. Relationship between the positive likelihood ratio (LR+) and the proportion of patients wrongly classified as cured, for
each algorithm tested.
doi:10.1371/journal.pntd.0001662.g003
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trypanosomes or a CSF leucocytes count $50. The predictors

studied are also based on the CSF leucocytes count (at an earlier

time) and are therefore not independent from the outcome

measurement. In particular when the predictor includes the same

value (CSF leucocytes count $50, such as in the algorithm 5-50-

20) the specificity is to some extent over-estimated.

The marker at the center of our analysis, the CSF leucocytes

count, is subject to measurement error, being a manual laboratory

technique. However, this particular laboratory exam is regarded as

crucial for the patient and it has been the object of great attention

in the MSF sites that were included in this study. Internal quality

control was implemented in all field laboratories, through blinded

double and triple CSF leucocytes counts, showing good levels of

consistency in the results (authors’ direct field observation, data

not published). To our knowledge there are no published works to

shed more light into this issue.

The timing of the follow-up assessments was treated via the

consolidation of the visit dates into time ‘‘tolerance’’ windows,

which are arbitrary groupings (we followed conventional windows)

[2]. This interval censoring is an imperfect way of capturing the

timing of events: for example what we treat as the ‘‘6 months’’

leucocytes count in reality happened anywhere between 5 and 9

months, with an uneven spread that tends to concentrate after the

6-months date. This field data distribution can be assumed to

correspond well with the reality of the routine programs, but it will

fit less the temporal distribution in clinical trials that usually have

intensive follow-up of patients.

Conclusions
This study provides robust evidence on the value of the CSF

leucocytes count to predict, at 6 and 12 months, the efficacy

outcome of second-stage T. b. gambiense HAT treatment.

For decision-making on individual patients followed-up in the

field, our findings confirm the good performance of the two-steps

algorithm using cut-off values of 5-50-20 leucocytes/mL. Other

algorithms can be used depending on the setting.

For the early estimation of efficacy in clinical trials, several

options are revealed, both in one step at 6 months and in two steps

at 6 and 12 months.
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