Performance and feasibility of FASTPlaqueTM to diagnose tuberculosis in smear-negative patients

Larame Gagnidze1,2, Francis Varaine3, Willie Githui1, Philippe J Guerin1, Andrew Ramsay4, Maryline Bonnet1
1Epicentre, 2Medecins Sans Frontieres, 3Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya, 4Liverpool School of Tropical Medicine

larniel@yahoo.com

BACKGROUND

• Developing countries
 – Most patients are living in areas with access to direct smear microscopy only to confirm TB
 – Culture available only in national/regional TB laboratory

• High prevalence of TB and HIV co-infected patients
 – Lower sensitivity of direct smear microscopy (50%)
 – Risk of under and late TB diagnosis
 – Urgent need for better diagnostic test for smear negative patients

RATIONALE

Reasons for selecting FASTPlaqueTM test for evaluation

– 2 days test
 – According to literature, detects 50 to 67% smear-negative culture-positive cases

– Presented by the Manufacturer as potentially suitable for district laboratory

– No multiplication of Mycobacterium tuberculosis bacilli

– To evaluate the feasibility of FASTPlaqueTB test in a laboratory performing in routine only direct smear-microscopy

FASTPlaqueTM test principle

Based on Phage amplification and utilis Mycobacteriophage to reflect the presence of viable Mycobacterium tuberculosis in sputum specimens

METHODS

• Prospective study
 – Urban primary health care setting, Mathare, Nairobi city, Kenya

• Inclusion criteria
 – ≥ 15 years old
 – Cough ≥ 2 weeks
 – 3 negative smear microscopy results
 – No response to one week amoxicillin course
 – Abnormal chest X-ray
 – Informed consent

• Consecutive sampling

• Voluntary Counselling HIV Test

• Laboratory procedure
 – Collection of 1 spot sputum specimen
 – Decontamination: NALC/NaOH followed by neutralization with Phosphate buffer
 – Half of specimen tested locally with FASTPlaqueTB according to the manufacturer’s instructions
 – Half of specimen referred for culture on Lovenstein Jensen medium

• Outcomes
 – Sensitivity, specificity and predictive values
 – Inter reader reliability
 – Very good agreement if Kappa test >0.80

• Feasibility criteria
 – Culture and FASTPlaqueTB contamination rates
 – Facility, equipment, human resources requirements
 – Workload assessed by the duration of the test procedures
 – Time between specimen collection and result

RESULTS OF PILOT STUDY

• High contamination rate
 – FASTPlaqueTB™ 99.6% (44/44)
 – Culture 21.7% (10/46)

• Modifications before to starting inclusions
 – Retraining of laboratory technologists in:
 – Aseptic techniques
 – Autoclave use
 – Working with a Laminar Flow Cabinet (LFC)
 – Increase in autoclave time to compensate for local altitude and volumes of liquid autoclaved
 – Move of LFC to a separate room with restricted access
 – Maintenance of LFC by technician from South Africa (expertise not available locally) and change of the HEPA filter after 3 months of use

• Recruitment stopped early due to the high rate of FASTPlaqueTB™ test unprocessable

 201 patients included
 – FASTPlaqueTB™ results
 – Sensitivity: 92/105 (87.9%)
 – Specificity: 89/96 (92.7%)
 – Positive Predictive Value: 80/91 (88.1%)
 – Negative Predictive Value: 90/110 (81.8%)

• Preliminary culture results
 – Contaminated: 10/95 (10.5%)
 – Positive: 32/188 (16.5%)

• Time between sputum collection and result
 – 2 to 9 days because tests were performed only once a week to prevent wasting of tests and reagents (kits of 10 tests)

• Test duration
 – Weekly containers sterilisation: median 2.8h (IQR 2.3-3.1)
 – Weekly reagent preparation: median 2.6h (IQR 2.3-3.1)

• Time between sputum collection and result
 – 2 to 9 days because tests were performed only once a week to prevent wasting of tests and reagents

• Human resource
 – Intensive training of technician with no experience of working in aseptic conditions and under a LFC

• Cost within the study context
 – The test costs 70’000 francs, 60% being extra cost to the cost the FASTPlaqueTB™ test
 – Upgrading the laboratory; equipment and maintenance cost: 19’800 francs

• Inter reader-reliability
 – Kappa [95% CI] = 0.81 [0.76 - 0.84]

• Evaluation of procedures and working of the LFC
 – Sterile water aseptically poured into a sterile conical tube and exposed to the air where specimens were collected
 – Tube processed as a specimen
 – Contamination of plate with gram positive bacilli

• Specimen collection
 – Sterile water poured aseptically into a sterile conical tube and exposed to the air where specimens were collected
 – Tube processed as a specimen
 – Contamination of plate with gram positive bacilli

• The decontamination process could kill all the vegetative forms of bacteria that could have been introduced by the dusty air, but failed to kill the spores

• Investigation of the source of contamination
 – The vast majority of contaminants were Gram positive bacilli

• Investigation of the source of contamination
 – 2 to 9 days because tests were performed only once a week to prevent wasting of tests and reagents

• Perspectives
 – Modifications FASTPlaqueTB™ with expected lower contamination currently under evaluation by the Manufacturer
 – FASTPlaqueTB™ remains still a potentially interesting test considering the 2 days results but requires culture level laboratory
 – Upgrading of peripheral laboratory to perform culture level test might only be feasible in very few settings

• More R&D on new tests suitable for peripheral setting is a top priority

DISCUSSION

High contamination rate

Main findings

40% unprocessable results due to contamination

10 tests kit might not be adapted for settings with low activity when used only in smear-negative patients

Requirement of culture level laboratory to perform FASTPlaqueTB™

Difficult and costly to upgrade peripheral laboratory to perform FASTPlaqueTB™

– Human resource ability to work under aseptic conditions
– Two rooms laboratory with a separate room for the LFC
– Expensive and fragile equipment
– 24h electrical power required
– Maintenance not available locally

Epicentre, 2Médecins Sans Frontières, 3Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya, 4Liverpool School of Tropical Medicine